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Complex systems with half-integer spins: Symplectic ensembles
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We study the statistical behavior of the Hermitian operators of complex systems with half-integer angular
momentum and time-reversal symmetry. The complexity leads to randomization of the operators which can
then be modeled, following maximum entropy hypothesis, by multiparametric Gaussian ensembles of real-
quaternion matrices. The modeling shows that it is possible to classify the statistical behavior of spin-based
complex systems into a continuum of universality classes characterized by a single parameter which is a

function of all system parameters.
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I. INTRODUCTION

Recent advances in science and technology have refo-
cused our attention on the particle spin. For example, spin-
tronics (“spin-based electronics”) is an emergent technology
which specifically exploits the spin properties of electron
(and more generally nuclear) instead of or in addition to the
charge degrees of freedom. The spin relaxation and spin
transport in metals and semiconductors are of fundamental
research interest not only for being basic solid state physics
issues, but also for the already demonstrated potential these
phenomena have in electronic technology [1-6]. In the do-
main of nanosystems, e.g., almost closed quantum dots, the
spin-orbit coupling or spin-spin interaction can significantly
influence the physical properties, e.g., transport and thermo-
dynamics behavior [1,7]. As a consequence, it is imperative
to seek more information about the role played by particle
spin. The information promises a wide variety of new de-
vices that combine logic, storage, and sensor applications
and might lead to quantum computers and quantum commu-
nication based on electronic solid-state devices [2,5].

Fundamental interest in spin-physics stems from the re-
quirement, posed by modern technologies, to control and
probe systems on length scales larger than atoms but small
enough to render averaging inapplicable. In a nanosystem,
for example, the statistical average over many subsystems is
not valid and the physical properties (e.g., conductance
through the system) become sample dependent. For a mas-
sive production of any device, however, it is important to
control the reproducibility of its physical properties. As a
consequence, knowledge of the sample-to-sample fluctua-
tions of the physical properties is important.

The physical properties of a system can in principle be
formulated in terms of the eigenvalues and eigenfunctions of
an operator associated with the system. The information
about the fluctuation of the properties can then be derived
from the distributions of the eigenvalues and eigenfunctions.
This motivates us to pursue the present study where our fo-
cus is on the study of the distributions and their evolutions
under varying system conditions for the conservative com-
plex systems with half-integer spin. A similar analysis for the
systems with integer spin is discussed in [8]. However, due
to the quaternion nature of the matrices resulting from Kram-
ers degeneracy, intermediate steps involved with derivation
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of the evolution equations for the half-integer cases are tech-
nically quite difficult which makes it necessary to study them
separately. The first step in this direction is to describe the
operator, e.g., Hamiltonian.

The conservative nature of the dynamics system requires
its Hamiltonian to be Hermitian: H'=H. The presence of
time-reversal symmetry along with half-integer total angular
momentum in the system (that is [H,7]=0 with T?=-1
where T is the time-reversal operator) leads to Kramers de-
generacy (double degeneracy of the eigenvalues) too [9]. As
a consequence, the Hamiltonian matrix can be most suitably
represented by a basis consisting of states, say ¢, and their
time-reversed pairs 7¢y, k=1— N. The latter allows the ma-
trix to be expressed in a quaternion form, Hk]EEjlekl;STs
with k,/=1—N, 7 =1, and 7,=io,_; where s=2,3,4 and
o,_; as the three Pauli matrices [9].

Under Kramers degeneracy, T can be expressed in a
simple form, T=7,K with K as the complex conjugation op-
erator [9]. The time-reversal symmetry (H=THT"") now im-
plies

4 4
Hy=-nHym=- 7'2(2 HZ;J?) =2 Hpo7. (1)

s=1 s=1

The time-reversal symmetry therefore reduces H to be a
quaternion real matrix, Hy.,=H,.  (for all k, I, s5). The
Hermiticity of H (Hy=H],) further leads to Hj.,=a,H .,
with a;=1 and a,=a3;=a,=—1. The Hamiltonian of a
time-reversal conservative system with half-integer angular
momentum can then be written as a NXN Hermitian
matrix with real-quaternion elements, H,(]EE;‘lekl;XT_Y
=% aHy.,7, with k,I=1— N and H,,., as real numbers [9].
(Note each Hy, is a 2 X2 matrix but Hy;,, are just numbers.)

Besides symmetry requirements, the structure of the ma-
trix representing the operator also depends on the nature of
the complexity in the system. The complexity may have its
origin in the complicated interactions among various sub-
units of a many-body system, e.g., nuclei, atoms, molecules,
etc., or due to complicated interference of high-lying eigen-
states of a simple system, e.g., quantum chaotic system. It
may also originate due to scattering from impurities, e.g., a
disordered system or from boundaries of the confining geom-
etry of a clean system, e.g., a quantum dot. The ultimate
effect of various sources of complexity in general is to render

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.76.051124

RINA DUTTA AND PRAGYA SHUKLA

exact determination of the matrix element, say Hy,= (k|H|I)
with |k), |I) as the basis vectors in a physically relevant basis,
technically difficult. As a consequence, each matrix element
can be best described by a distribution with its moments,
e.g., variance, mean reflecting the nature of physical con-
straints, e.g., localized or delocalized wave dynamics, inter-
actions, scattering and boundary conditions, dimensionality,
etc.

A prior knowledge of the joint probability density of all
the matrix elements, termed also as ensemble density, is nec-
essary to determine the distributions of the eigenvalues and
eigenfunctions. In this paper, we consider a multiparametric
Gaussian ensemble density which can model a wide range of
complex systems; this is explained by an example described
in the next section. In principle, an integration of the en-
semble density over undesirable variables, e.g., eigenvectors
or eigenvalues will give the distributions of eigenvalues or
eigenvectors, respectively. However, this route being techni-
cally difficult, we choose to explore the diffusion route de-
scribed in Sec. III. The diffusion equation of the ensemble
density is then used in Sec. IV to formulate the diffusion of
the eigenvalues and eigenfunctions; as described in Sec. V,
the implications of the formulation are numerically verified.
The analytical results well supported by our numerical analy-
sis lead to concluding remarks given in Sec. VL.

II. SYSTEMS WITH REAL-QUATERNION MATRIX
REPRESENTATION: AN EXAMPLE

The examples of such systems appear in many branches
of physics, e.g., nuclear physics [10,11], condensed matter
physics [1,2,5,7,12], quantum chaos [13], etc. As an ex-
ample, let us consider the case of an Anderson system, a
d-dimensional disordered system of fermions (with spin-1/2)
with spin-orbit coupling (SOC) [12]. Within tight-binding
approximation, the Hamiltonian H of the system can be de-
scribed as

H:E €,|n,o)n, o] + 2 V,‘fn‘;’

’
n+m,o,o

n,o¥m,a’|.  (2)

Here o=+1/2 and n refers to the lattice sites, n=1— L¢, €,
is the spin-independent, on-site random potential. The hop-
ping is assumed to connect only the z nearest neighbors (re-
ferred to by m) of each site. In the site basis, each matrix
element of H is a 2 X 2 matrix (due to two component spinor

) it
Hp “H 7
=(ko|H|lo"'). Thus, H can be written as a real-quaternion
sparse matrix of size N=L¢ with diagonal matrix elements as
the site energies Hy,=¢€,7;. The off-diagonal H,;, describing
the hopping interaction between two sites k and /, are 2 X2
matrices describing spin rotation due to the SOC on every
lattice bond (k,1),

space associated with each site), Hy=

4

Hy=Viam + u> Vids T
s=2

Vign +inViga
= u(Vigs + Vi)

where u denotes the SOC coupling and V. are real and

#(Vigz +iVig)

. (3)
Vien = iViga
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independent random variables; for simplification we take
Vi =1.

The randomness of the on-site potential €, and hopping
terms V,; permits a possible description of Hy=H.,= €,
Hy =7, and Hy. ;= uVy. 7, (for s=2,3,4 and k+# 1) only by
the distributions, say, py(Hy) and py(Hy), respectively. Let
us consider the isotropic case when ¢, and V), are Gaussian
distributed with zero mean and variances w and 7, respec-
tively. This gives pkk(Hkk)=e_H£k/2wa Prizt (i) = 8(Hyg; = 1),
pkl;s(Hkl;s)=e‘HI%l:x/2“2’7 (with s=2—4) for each (k,[) pair
connected by hopping; here the variances w and 7 depend on
the system conditions, e.g., disorder and spin-orbit interac-
tions. The lack of hopping between two sites, say k', I, gives
Hk'l':O which lmplleS pkrl/(Hk/]/):(s(kalf). The probablhty
density p(H)=1l; ;.;<ipu.s(Hy.s) of the Anderson ensemble
(AE) can then be given by

4
p(H,v,b)=C exp<— D Hyl2o-2 X Hy/2up’ 7;)
k

s=2 (k,l)=n.n.
x ]I O Hy = 1) I1 o(Hy) 4)
(k,l)=n.n (k,l)#n.n.

with C as the normalization constant. Note, for later refer-
ence, that the S-function terms above can also be written as
the limiting Gaussians [5(x)=limvHO(Z71'02)‘”26‘)‘2’2”2].

The above example corresponds to a specific case of a
spin system with on-site disorder and isotropic nearest-
neighbor random hopping. In general, the hopping can also
be long-range and/or anisotropic, nonrandom or random with
a nonrandom component. To describe all such possibilities,
we consider an ensemble of 2N X 2N Hermitian matrices H
with real-quaternion elements H,; distributed as Gaussians
with arbitrary mean and variances; the four linearly indepen-
dent components of each matrix element are chosen to be
statistically independent. A general form of the probability
density p(H)=1Il; j..<;p(Hy;) of the ensemble can then be
given by

4
p(H,h,b) = C exp(— > > (1204,) (Hygey — bkm)z) (5)

s=1 k=l

with subscript “s” of a variable referring to its components, v
as the matrix of the variances Ukl;s=<H1%1;5>_<Hkl;s>2’ and b as
the matrix of all mean values (H};.,)=by;.,. As obvious, in the
limit vy;,—0, Eq. (5) contains a nonrandom contribution
from Hy.; [as py(Hy.s) — 8(Hyp.s—bys)]. Note Eq. (4) is a
special case of Eq. (5) with

Uik = W, bkk=0,

Ukls = 77M2(1 - 5sl)fkl’ bk];s = slfkl’ (6)

where fi;=1 for the connected {k,l} pairs, and f;=0 for all
{k,l} indices corresponding to disconnected pairs of sites.
Equation (5) can also model the cases with hopping to be
anisotropic (by choosing different variances for connected
pairs), nonrandom or random (by choosing zero or nonzero
variances for connected pairs). Further, note that Eq. (5)
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gives the Gaussian symplectic ensemble (GSE) in the limit
=0 =", byi=0, pre” V2T ",

In the example described by Eq. (4), the randomness of
the matrix elements is caused due to impurities. As men-
tioned above, the presence of other types of complicated in-
teractions can also make the exact determination of the ma-
trix elements difficult. The elements are then best described
by a distribution which can be determined by the maximum
entropy principle (MEP) subjected to known physical con-
straints [14]. For example, MEP predicts a Gaussian distri-
bution of a variable if its average behavior and variance are
the only known constraints. As a consequence, the half-
integer spin systems with randomness originated from
sources other than disorder can also be modeled by the en-
semble density (5).

III. SINGLE PARAMETRIC EVOLUTION
OF THE MULTIPARAMETRIC
ENSEMBLE DENSITY

The distribution parameters of p are basically a measure
of the degree of inexactness associated with the determina-
tion of the matrix elements due to existing system condi-
tions. A change of the latter may therefore affect the distri-
bution parameters of p and thereby its statistical properties.
Using Gaussian nature of p, it is easy to verify that under a
change of the parameters vy, — Ui+ OUgys and by — by
+ 6by,.5, the matrix elements Hy, undergo a diffusion dynam-
ics along with a finite drift,

Tp=Lp, (7)
where
¥oa
T=2 "
=1 9f;
Jd (8u 9
L= _<_ + vHy. ) (8)
ity OHigs\ 2 0H . ?
with

fj=(1/2)ln|xk1;s|+cj' for j=1 _>M],

-fj = 1n|bkl;x| + Cj for ] > M] . (9)

Here Xilys = 1 —ygklvk,;s with §k,=2—5k, and 8= 1 +5kl7 with
M, and M-M, as the number of nonzero parameters x;.
and by, respectively. The parameter 7y is arbitrary, giving
the variance of the matrix elements at the end of the evolu-
tion [8].

Equation (7) describes a multiparametric flow of matrix
elements from an arbitrary initial condition, say H,. It is
possible, however, to define a single parameter Y which sat-
isfies the condition Tp=dyp. Thus, matrix elements undergo
a single parametric diffusion with respect to Y,

— =Lp. (10)
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The parameter Y can be obtained by solving the condition
T'=3y; the existence of a solution requires the following con-
dition to be fulfilled:

WALy Ay = QuArds Ay (11)

where « are arbitrary constants and A;=a;(d;Y )1
X (=N, a)~" [15]. Choosing a;=1 (for all j) with f; givén by
Eq. (9), it is easy to show that the above condition is fulfilled
and Y can be given as

4
1
ZMyln(H/H |xkl;x||bk1;s|2> +C, (12)

k=l s=1

Y=-

here I1" implies a product over nonzero parameters b, and
Xy.s With M as their total number. Further, C is a constant
determined by the initial distribution. Being a function of
various distribution parameters vy, and by, Y can be re-
ferred to as the complexity parameter. (Note, as for the real-
symmetric and complex Hermitian cases, ¥ can also be
derived by alternative methods, discussed in [8,16].) As ex-
amples, here we consider Y for three specific cases of the
real-quaternion matrices (also useful for later reference):

(i) Ensemble of diagonal matrices. This case can be de-
scribed by the distribution parameter

<Hil;s>=vkl;s=(2Vk)_15k1551’ (H)=by=0. (13)

A substitution of the above in Eq. (12) gives Y,
Y=-2yM)™" X, In|1 = (y/2v,)| + const. (14)
k

Note here, all x;;.; being nonzero, one has M=N(2N-1).

(ii) Case with constant ratio of the diagonal and off-
diagonal variances. Consider the case described by the dis-
tribution

<Hil;s> =vg= @Y 28+ (1= 8)(1+w) '],

(Hy) = by =0; (15)

the complexity parameter Y corresponding to this case is
[with M=N(2N-1)]

Y=-NQyM)"{2(N - 1)In|1 = [4(1 + ©)]"| = In 2} + const.
(16)

Note this case can also describe an ensemble of Anderson
Hamiltonians with very long range, isotropic, random hop-
ping. Also note that the limit u—0 corresponds to the
Gaussian symplectic ensemble case [9] [as (Hik>=2<H,%l;X>
from Eq. (15)]. Similarly the limit w— o (corresponding to
diagonal ensembles) gives Y the same as in Eq. (14) with
V=Y.

(iii) Anderson ensemble. The substitution of parameters
given by Eq. (6) in Eq. (12) gives Y for the ensemble of the
Hamiltonians (2),

N
Y =— ——a+const (17)
2My
with a=In|1-yw|+(3z/2)In[|1-2yu’y|]. Here M=N(4N
+7z-2)/2 [due to N+2N(N-1) nonzero contributions from
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X, Where k,I=1, ... N (with k=), and zN/2 nonzero con-
tributions from b,,,.; values for nearest-neighbor pairs H,,,].

The solution of Eq. (10) gives the state p( H,Y|H,,Y,) of
the flow at parameter Y, starting from an arbitrary initial
state Hy with Y=Y,. An integration over initial probability
density results in the Y governed density, p(H,Y)
=[p(H,Y|H,,Yy)p(H,y,Yy)dH,. The evolution reaches a
steady state when dp/dY —0 (equivalently Zvy.s— ¥ '
by.s—0), with the solution p(H) approaching the Gaussian
symplectic ensemble [this is expected as the limit g v
— 5!, bys—0 of Eq. (4) corresponds to a GSE too].

IV. COMPLEXITY PARAMETER GOVERNED DIFFUSION
OF THE EIGENVALUES AND THE EIGENFUNCTIONS

The eigenvalue equation of an N X N real-quaternion Her-
mitian matrix H is given by HS=SA with A as the NXN
real-quaternion matrix of eigenvalues, A,,,=\,7,6,,, and S
as the N X N real-quaternion eigenvector matrix, symplectic
in nature, S*S=857,5T=r, where Sf=5*=5""[9].

The joint probability density of the eigenvalues can be
defined as follows: Let PZ{E,},Y(v,b)] be the joint prob-
ability of finding eigenvalues \; of H between E; and E;

+dE; (i=1,2,...,N) for given v and b matrices, it can then
be expressed as
N
Pe{E}Y) = | IT 8B~ N)p(H.Y)dH. — (18)

i=1

The joint probability density Py, of the components S,
(n=1—N) of ¢ eigenvectors S; (k=1—g¢) can similarly be
defined as

q
z,Y)= | 11 fip(H,Y)dH,  (19)
k=1

PnZ1,Zs, ...,

where fi= 87— S,) 8(Z8—SF) 8(e ).

As mentioned above, the information about system con-
ditions is contained in p and therefore Py and Py, through Y.
The effect of the variation of system conditions (e.g., disor-
der, boundary conditions, etc., in the samples) can therefore
be determined by a knowledge of the Y-governed evolution
of Py or Py,. As for the ensembles of real symmetric matri-
ces (B=1) and complex Hermitian matrices (8=2) [17], the
latter can also be derived by first taking the Y derivatives of
Egs. (18) and (19) and subsequently using Eq. (10). Note
that, although the form of Eq. (10) is the same as for the B8
=1,2 cases [16,17], it is not obvious, however, that the dif-
fusion equations for the eigenvalues and eigenvectors of the
symplectic case will also be analogous to the S=1,2 cases.
This is because the derivation of the equations from Eq. (10)
is based on the responses of the eigenvalues \, and eigen-
functions S, to a slight perturbation of Hy,;. Due to the quater-
nion form of Hy,, the responses for real-quaternion Hermitian
matrices are different from those for the S=1,2 cases,

o, 1
OH = g_(kaTsSIn + assflTsSkn) s (20)
kl;s kl
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aSr 1 Srm
= — X I (Sn S+ 4SS, (21)
aHkl;s 8kim+#n )\n )\m
ask 1
— = — (SR 7.8 + a SR TS ) SE
aHkl;s 8kim+#n )\n - )\m
(22)

where g,,=1+ 8 (see Appendix A for the proof). Note that,
contrary to 8=1,2 cases [8], the order of variables are im-
portant in the above equations, S;; and 7 being 2 X 2 matri-
ces, which makes them technically more difficult to use for
the derivations of the following equations (see Appendix B
for details):

4

O\
n H 2
AElkglaHkls s =M (23)
2N
=28, , 24
% g] gklﬁHkls IH . " (24
1
. 25
%%gklaHk“ E)\n_)\m (25)

The substitution of Eq. (10) in the Y derivative of Pp,
followed by a partial integration and subsequent use of Eqs.
(23)—(25), leads to the diffusion equation for the eigenvalues

ﬁzzi(iJrz

24 n aEn &En m#n

+yE, |Pg, (26
Em_En 711>E ( )

where B=4. Note that the form of the above equation is
similar to the B=1,2 cases (see [8]).

Equation (26) is analogous to the equation governing the
evolution of eigenvalues of the Brownian ensembles (BE),
consisting of real-quaternion matrices [9,18] [a similar anal-
ogy exists between B=1,2 variants of the ensemble (5) and
corresponding BEs too, see [8]]. The particular class of
Brownian ensemble can be described as a nonstationary state
undergoing a crossover due to a perturbation of a Hermitian
matrix H, by a real-quaternion random Hermitian matrix V
takgn from GSE (see [8,9,18,19] for the details on BEs), H
=\f(Hy+\V) [with f=(1-\?)""]. In the diagonal representa-
tion of the initial state H,, the random perturbation V (of
strength A) belongs to GSE. Note that the ensemble density
of the above class of BEs can also be represented by Eq. (5)
with variances and mean of the matrix elements given by Eq.
(15) with (1+)=(\?f)""; Y for BE is then given by Eq. (16)
too.

Similar to the Py case, Py, for various transition stages
can be obtained by first substituting Eq. (10) in the Y deriva-
tive of Eq. (19) and then simplifying it by partial integration.
This, however, requires the following relations (besides those
for the eigenvalues):

as,
> _LHkl s=0, (27)

kLot O
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&S, Snj
@ n —_ n (28)

klsk=l 2 &H]%l;_v mj ONEDWEN

> g P =0, (29)
klsk=l  OHys OHy
E ﬁsni AT __ B Snisgi (1 _s ) (30)
8kl —L 3 i)
klsk=l  OHys OHy (Ni=N\)
R R
S g B _ gy Swdp (3
8k 50
k,l,ssk=I aI—Ikl;s aHkl:s m#j ()\j - )\m)

The above equations can again be derived from Egs.
(20)—(22) following steps similar to those given in Appendix
B for Egs. (23)-(25).

The reduction of the integrals over matrix elements Hy,
appearing in the Y derivatives of Py, to the derivatives with
respect to the eigenfunction components is discussed in de-
tail in [17] for B=1,2 cases. Following similar steps and
with the help of Egs. (27)-(31), we obtain

P T
(9—1’:% =2 (Fy+ F{ +L, Py,). (32)
k=1

where

q N
Fi=F+2 2 2 -

I=1;#k m,n=1 aan azml

( Znklml )PNq (33)

(ex— 6’1)2

with

N
FK=LE ’ (E(?_}lz"‘hl)’ (34)

2 R
Dloca1n=l aznk m (9ka

and 132 is similar to Fy with each component z,; of the ei-
genvector Z; replaced by zX. Here hj=x(N- DPyg o
=X(5mn_z?:1ZZZan)PNq with y— 1 for u<Z{, x— /& for
w> ¢ where u=(e”2""=Y0-1)7! and ¢, is the localization
length of the kth eigenvector.

The steady states of the above evolution are again given
by the limit dPy,/dY — 0. As for P, the solution of Eq. (32)
in this limit turns out to be the corresponding distributions of
a Gaussian symplectic ensemble (see [9] for the latter). Note
that the form of Eq. (32) is the same as for the 8=1,2 cases
[17] except now z,; are 2 X 2 matrices and with the follow-
ing replacements: z:kﬂsz and §2/4—2.

Equation (32) can further be used to derive the diffusion
equations for various other combinations of the eigenfunc-
tion components; for example, the distribution P,, (distribu-
tion of the r components of just one eigenstate, say j) is
given by the integration of Eq. (32) over all components of
g—1 eigenstates (except jth) and only the undesirable N—r
components of the jth eigenstate. The equations are impor-
tant as they can lead to Y-dependent formulation of the en-
semble average as well as the distribution of any measure of
the eigenfunction correlations. (A knowledge of the distribu-
tion is required because the strength of the reproducible fluc-
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tuations of different realizations of a same complex system
can be of the order of the averages.) The derivation of the Y
governed distributions of the measures, starting from Eq.
(32), is discussed in detail in [17] for B8=1,2 cases. How-
ever, due to the quaternion form of the variables, the deriva-
tions for the B=4 case are technically more difficult and
require a detailed discussion; we hope to present it in a sepa-
rate paper in the near future.

Equations (26) and (32) show that the fluctuations of the
eigenvalues and the eigenfunctions are governed by a single
parameter Y. However, the need to compare fluctuations
against the same background requires a rescaling of the ei-
genvalues and eigenfunctions and therefore Y [9,17]. The
rescaling of Y is measure based, with rescaled complexity
parameters given as

Ameasure = Cmeasure| Y - Y0|/D1200a1' (35)

Here D, refers to the local mean-level density and ¢ casure
depends on the nature of the fluctuation measure under con-
sideration; for example, c¢,=1 for all eigenvalue fluctuations
(except mean-level density), however, it can vary for eigen-
vector fluctuation measures. The reason for a measure based
rescaling of the complexity parameter Y is discussed in some
detail in [17] for real-symmetric and complex Hermitian
cases; the analogous form of Eq. (32) (notwithstanding
quaternion variables) suggests it to be valid for the symplec-
tic case too. Thus, we believe that, analogous to B=1,2
cases, the parameters A,, A;, for the local intensity u
=|z,u/* and the inverse participation ratio I,=32"|z,,*, re-
spectively, of an eigenfunction, say Z, (see [17] for the defi-
nition of these measures) can be given as

Ay=p'A, A, =2xA,, (36)

where A,=(Y-Y,)/D} ., is the rescaled spectral complexity
parameter and the parameters w and y are the same as in Eq.
(34). [Note that Eq. (32) of [17] contains a misprint: A,
appearing in the equation should read as A. Further, the cor-
rect definition of A, is given above in Eq. (36) (instead of
A,=puA reported in [17]).]

Our analytical results indicate the same behavior of the
spectral fluctuation measures of different complex systems
[i.e., different v,b matrices in Eq. (5)] with half-integer spin
if their complexity parameters A, are equal. The statistical
spectral behavior of all complex systems modeled by Eq. (5)
can therefore be classified in different universality classes
described by A,. The possibility of a continuous variation of
A, indicates the existence of infinitely many such classes.
The same classification can also be applied for the measures
related to the eigenfunction correlations. Although the latter
are governed by two parameters A e @8 Well as the sys-
tem size N, however, A e 18 related to A, [17].

Another important application of the A formulation is to
explore the possibility of a critical behavior of the system
[17] which can briefly be explained as follows: Due to N
dependence of A, the variation of the physical conditions in
an infinite-size system in general leads to one of the two
limits, either A—0 or A —oo. Contrary to finite-size behav-
ior, the statistical behavior in the limit N — o therefore cor-
responds to only one of the two universality classes, namely,
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the initial state (A—0) or the steady state, i.e., Gaussian
symplectic ensemble (A—<0). A new universality class of
the statistics, referred to as the critical statistics, however,
may appear even in the infinite-size limit if the system pa-
rameters satisfy the condition limy_,. A(v,b,N)— Aitical
where Ay 18 nonzero and finite (the latter is an indicator
of the statistical behavior different from those at A=0,c0
limits). For example, contrary to the spinless case, it is pos-
sible to find a critical disorder for the two-dimensional
Anderson Hamiltonian with spin-orbit scattering which leads
to nonzero, finite A, even in the infinite-size limit. This is
because the spin-orbit interaction leads to an enhancement of
the localization length ¢ [12] and which may result in a fi-
nite, nonzero A, even in the infinite-size limit. (For the d
=2 spinless cases, { being an exponential function of the
mean free path only, A—0 in the limit N—o [20]. This
explains the observed lack of critical point for d=2 spinless
cases.)

As mentioned above, a BE is a specific case of Eq. (5)
with distribution parameters given by Eq. (15) and Y given
by Eq. (16). The diffusion equations (26) and (32) for the
ensemble (5) are therefore applicable for the BEs too, ap-
pearing during the initial ensemble — Gaussian symplectic
ensemble transition. This further implies the analogy of vari-
ous fluctuation measures for the two cases if their rescaled
complexity parameters are the same (and system size is also
the same for the eigenfunction measures) [17]. The analogy
can be utilized to a great advantage. The single parametric
BEs are technically easily tractable as compared to Eq. (5)
and many of their statistical spectral properties are already
known [19]. The information about the symplectic class of
BEs can then be used to derive the statistical properties of
many complex systems with half-integer spin represented by
ensemble (5).

V. NUMERICAL ANALYSIS

To reconfirm the statistical analogy of the systems repre-
sented by Eq. (5) with BEs, we numerically compare the
fluctuation measures of a prototype complex system, namely,
the AE with those of BEs.

(i) Anderson ensemble. For numerical analysis, we con-
sider a square Anderson lattice of linear size L (N =17?) with
its Hamiltonian described by Eq. (2). The spin-independent
on-site potential € is a random variable chosen from a
Gaussian distribution of variance w=W?/12, W=2.92 and
mean zero. The hopping is chosen to be between nearest
neighbors, isotropic and random; the hopping matrix element
H,, is described by Eq. (3) with SOC coupling strength u
=2 and variables V},.; (s=2,3,4) as random variables chosen
from a Gaussian distribution with mean zero and variance
7=V,/12, where V;=0.5 [12]. (As indicated by our numer-
ics, the chosen parameter values correspond to the critical
regime. Note that, for the case with uniform distributed on-
site potential, the critical point is found to occur at disorder
values W=8.55, V=1 [12].) A substitution of the above val-
ues in Eq. (17) gives Y =-—a/4N with a=3.68 (for the choice
of y=1).
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FIG. 1. (Color online) The behavior of level density F(E)
=(ND)": (a) for the AE for two system sizes L=10 and L=15. The
numerical fitted function f(x) (with x=E) has the form F(E)
=\9—(E+0.5)?/; (b) for the critical BE analog (c=0.25) of the
higher-order spectral correlations of the AE considered in (a). Here
F is well fitted by the function F(E)= fle‘E2 with f;=2/r. Note the
lack of analogy between the mean-level densities for the cases
given in (a) and (b) while their higher-order spectral correlations
(shown in Fig. 4) are approximately the same. This is consistent
with the theory (see [8,19]). The numerical analysis of F for the BE
cases ¢=0.03 and ¢=0.4 gives f;=7""2 and 2/, respectively; as
shown in Figs. 6 and 7, these BEs are the analogs for the eigen-
function measures, namely, local eigenfunction intensity and in-
verse participation ratio.

The calculation of A requires the choice of a physically
suitable initial state H,. We choose H, as an insulator, rep-
resented by an ensemble of diagonal matrices with distribu-
tion parameters given by Eq. (13) (taking v,=1 for all k);
the statistics of the eigenvalues for H( corresponds to the
Poisson distribution and with completely localized eigen-
functions. Following Eq. (14), the complexity parameter for
the initial state can then be given as Y,=—ay/4N with «
=In 2.

Using Y and Y, in Eq. (35), the spectral complexity pa-
rameter A, can be obtained,

051124-6



COMPLEX SYSTEMS WITH HALF-INTEGER SPINS: ...

1.2 : : . . .
“ T
1 s = |
S 5 L=20 ¥
L=25
08l = o U
@D osl 2 |
o B i
04l |
s
- B
0.2 b _
B %
% . . .
0 —=s 1 5
10 : : : : :
(o) =10 A
L=15
1t
01}
@)
a
001}
0.001 |
1e_04 1 1 1 1 1

0 0.5 1 é5 2 25 3

PHYSICAL REVIEW E 76, 051124 (2007)

0.55 ‘ ‘ ‘

B e
05} - 7
0.45 B

' L=25 []
0.4r 7

=095 7

=

(a\]

Ny, o3p K 7
025 - - 7
02r ) 7

H%EH%%
015+ 2N %%%% |
WL, CEEEEEERgy
. 7 8

1 2 3 4 rf" 6 9 10

FIG. 2. (Color online) Verification of critical spectral statistics for the Anderson ensemble: (a) and (b) Linear and semilog plots for the
distribution P(S) of the nearest-neighbor spacing S of the eigenvalues for four system sizes; (c) number variance 2,(r) for various N values.
The behavior of both measures remains almost unchanged for different N=L? values, thus suggesting a critical point of spectral statistics at
the chosen disorder. Here the ensemble for each N case is chosen such that we have almost 2 X 107 eigenvalues (taken from an energy range

AE=20% around the band center) for the statistical analysis.

A JEY)=|a- a| PP 4y, (37)

with a—ay=3 and subscript “a” referring to AE. Here we
have used the relation D, =D(L/{)?=(¢F)~" with D as the
global mean-level density, F(E) as a function of energy only,
F(E)=(ND)7!, and { as the average localization length which
is related to the typical inverse participation ratio /5
=exp(ln L)< 7!,

(ii) Brownian ensemble. To compare with AE [Eq. (4)],
we need to consider a specific class of BEs which appears
during a transition from Poisson — GSE, caused by a pertur-
bation of the former by the latter (that is, taking H, and V as
Poisson and GSE, respectively). This is because, similar to
the Anderson transition for SOC cases, Poisson — GSE tran-
sition also occurs in the symplectic matrix space, resulting in
a change of localized eigenstates to delocalized ones. The
specific class of BEs can be described by an N X N ensemble
of real-quaternion matrices H represented by Eq. (5) with
mean and variances of the elements given by Eq. (15) and ¥
given by Eq. (16).

The parameter A, for this case can now be given as

Aoy (E,Y) =[4(1 + @)D} 1™ (38)

with subscript “b” referring to the BE case with Y|, given by
Eq. (13). Note here that the initial state H, is chosen to be the
same as for the AE case, however, it corresponds to a differ-
ent physical limit, namely, w— o0 [which is different from
the insulator limit of H given by Eq. (1)]. Approximating
Djoet =D=(NF)~" (which corresponds to the approximation
{*=N), Eq. (38) suggests the possible existence of a critical
point for BEs if condition u=cN? is satisfied; our numerical
analysis given below confirms the suggestion.

Our aim is to show that the behavior of the fluctuation
measures of AE is analogous to BE at system parameters
which lead to the same A . e fOr both cases. The latter can
be used as a condition, to obtain the parameter ¢ for the BE
analog of a given AE (note, as mentioned above, the analog
for different measures may be different). As indicated by
Egs. (37) and (38), this requires a prior information about F
and I5®. Figure 1 shows the ensemble averaged F for AE and
BE cases; the close agreement of curves for two sizes con-
firms the size independence of F for each case. Our numeri-
cal study for various sizes of two systems shows that I;ylg
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FIG. 3. (Color online) Verification of critical spectral statistics for the Brownian ensemble: (a) and (b) Linear and semilog plots for the
distribution P(S) of the nearest-neighbor spacing S of the eigenvalues for BEs for various ¢ and two values of N; (c) number variance 2,(r)
for BEs. For a given c, the behavior of both measures remains unchanged for different N values, thus indicating a critical point of the BEs.

The sample size for the statistical analysis is the same as in Fig. 2.

~N™3 and I3} % cN"%. The information about /5® and F
can now be used to obtain the parameter ¢ for BE analogs of
the AE.

As A for the two cases is energy dependent, the fluctua-
tion measures should be compared at precisely a given value
of energy. For numerical analysis, however, one needs to
consider averages over an energy range AE which should be
sufficiently large in order to improve the statistics. On the
other hand, the choice of a very large AE will lead to mixing
of different statistics (in a range AA o SE). This, an opti-
mized range of AFE, should be considered; we choose AE to
be about 10% of the bandwidth, around the band center. For
the cases considered here, the chosen AE corresponds to ap-
proximately 1% variation of the density of states, thus avoid-
ing mixing of different statistics.

Equations (37) and (38) along with the I, and F study
indicate N independence of A, ,, A, ,. As per theoretical pre-
diction, both systems are expected to show critical behavior
of the spectral statistics. To check this, we analyze large
Anderson and Brownian ensembles, consisting of several
thousand matrices, for various matrix sizes. Prior to the
analysis, the eigenvalues are unfolded by local mean-level
density. Figure 2 shows results for two spectral measures,

namely, the nearest-neighbor spacing distribution P(s), a
measure of the short-range spectral correlations, and the
number variance, a measure of long-range correlations (see
[9] for their definitions) for the AE case; agreement of the
curves shown in the figures for various sizes confirms size
independence of the spectral fluctuations, thus confirming
their critical nature for chosen disorder. Similarly, correspon-
dence of the statistics for various sizes for the BE case with
,u=cN2, shown in Fig. 3, confirms its critical nature. Note,
following Eq. (38), the critical behavior of the BE with u
=cN? requires Dy, *N~'; for BEs therefore, the relation
Dioca=DN/ {=I3P/F (giving Djoe®N"% following our
I5P result) does not seem to be applicable.

To verify analogy of the spectral statistics for the same A,
values of AE and BE cases, we analyze the ensembles of
5000 matrices with matrix size N=100 for each case. Figure
4 shows the AE-BE comparison of P(s); here the ¢ parameter
for the BE analog has been obtained by using A,,=A,,
[given by Egs. (37) and (38)]. The good agreement between
two curves verifies the analytical prediction about the single
parametric dependence of the spectral correlations. This is
reconfirmed by Fig. 5 showing the comparison of the number
variance. Note, as predicted by our theoretical analysis, the
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FIG. 4. (Color online) Comparison of nearest-neighbor spacing
distribution P(s) for AE (A,,~0.53) and its BE analog (c¢=0.25
which gives A, ,=~0.41): (a) linear plot, (b) semilog plot. The sta-
tistics is improved here by taking the energy average (in an energy
range AE=40% around the band center) as well as an ensemble
average (an ensemble of 5% 10° matrices, each of size N=100)
which gives us 2 X 10° eigenvalues for the analysis. Note the rela-
tion A, ,=A,, suggests the BE analog to be C=F,2,(4AM)_l =0.20;
the slight deviation of numerical analog from analytical prediction
seems to be due to numerical errors.

BE analogs for both spectral measures of AE are the same.

As discussed above, the eigenfunction fluctuations are in-
fluenced by both A as well as system size N. To compare
A easure dependence of an eigenfunction fluctuation measure,
therefore, the same size should be taken for each system. As
examples, here we consider distributions of two measures,
namely, local eigenfunction intensity P,(«) and inverse par-
ticipation ratio P/(I,) (see [17] for the definition of these
measures). As Y—Y,xN~" with r=1,2 for AE and BE, re-
spectively, the rescaled complexity parameter A, for P, can
be approximated as A,=A,/u=2(Y-Y,)?*/D;_, (as p
~[2(Y-Y,)]! for AE and BE cases considered here). The
BE analog for the local intensity distribution of AE can then
be obtained by the condition A, Diocao=AcpDiocap; this
gives ¢=0.025 for BE analog (using D)oy ,=DN/ ¢ and
D)oca,=D). However, as shown in Fig. 6 for the distribution
P,(u') [u'=(In u—(In u))/{In> u)], our numerical analysis
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FIG. 5. (Color online) Comparison of number variance for AE
(same sample size as in Fig. 4) with its BE analog (c=0.25). Here
the chosen AE range is reduced as the calculation of 2,(r) for large
r is more sensitive [as compared to P(S)] to the unavoidable error
introduced by considering eigenvalues in a finite energy range (due
to E dependence of A, the statistics in principal should be compared
at a given E value, however, one needs to consider the range to
improve the sample size for the statistics). Note the BE analog of
AE in this case is the same as in Fig. 4 but different from Figs. 6
and 7.

predicts BE with (¢=0.03) as the analog; the small deviation
from theoretical prediction again seems to be due to numeri-
cal errors.

The parameter ¢ for the BE analog of the inverse partici-
pation ratio of AE can similarly be obtained by the relation
Aipa=Nipp OF XA, o=xpA, . However, using x=u/ £ for
both AE and BE (as suggested by analysis in [17]) leads to a
¢ value different from the one obtained by numerical analy-
sis, namely, ¢=0.4 [see Fig. 7 showing P,(In I,) behavior].
The error seems to originate from the approximation used for
x- Further studies of AEs with different system condition and
a numerical search for their BE analogs can be helpful to
explore a correct behavior of y; we hope to pursue this
analysis in the near future.

VI. CONCLUSION

In the end we summarize our main results.

The Hermitian operators governing the dynamics of a
large class of complex systems with half-integer spin may
depend on many system parameters, however, their statistical
fluctuations seem to be governed by a single parameter A.
This indicates a possible characterization of complex sys-
tems by their complexity parameters. The result is analogous
to systems with integer spin and with or without time-
reversal symmetry. The surprising result suggests that the
sample-to-sample fluctuations of physical properties are not
sensitive to the origin of the interactions, random or nonran-
dom, and are influenced only by the degree of uncertainty
associated with their determination. This suggests a deep
rooted universality as well as a web of connection hidden
underneath the statistical behavior of complex systems which
should be investigated in detail.
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FIG. 6. (Color online) Comparison of eigenfunction statistics for
AE and BE: Distribution P,(u’) with u'=(In u—{u))/{In* u) of the
local intensity of an eigenfunction near band center for AE and its
BE analog (¢=0.03). The parts (a) and (b) of the figure correspond
to linear and semilog plot, respectively. The statistics is improved
here by taking the average over eigenfunctions in an energy range
AE around the band center as well as the average over an ensemble
of 5% 10° matrices, each of size N=100. Here, the BE analog is
obtained first by finding ¢ by the relation f,=t,, where f,
=A,Diocals and subsequent numerical analysis of BEs in the
neighborhood of theoretical ¢; the latter gives ¢=0.03 (#,~0.047)
to be closest to the AE curve. Note 7,~0.057 for the AE case which
implies its BE analog to be c=(4\@Nt,)"'=0.025.
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APPENDIX A: PROOF OF EQS. (20)-(22)

The use of the eigenvalue equation HS=SA, with S as a
symplectic matrix and A the eigenvalue matrix, leads to the
following:

EHU jn=

(A1)

Differentiating the above equatlon with respect to Hy,.,, then
multlplylng both sides by SX. followed by a summation over
all i’s, leads to

ni’

PHYSICAL REVIEW E 76, 051124 (2007)

1.4 T T T T T
. (@) AE o

12} @ BE,c=0.4 ]

¥

10 .
®) AE O
BEc=04
1t
0.1}
.\A
=
o
001}
0.001
1e-04 . . L . L
&043 A 05 IQ 05 1 15

FIG. 7. (Color online) Distribution P(I}) of the rescaled inverse
participation ratio I5=1n(I,/13P) for AE and its BE analog: (a) linear
plot, (b) tail behavior (semilog plot). Here the sample size is the
same as in Fig. 6. Note the analog is different from Figs. 4—6. Our
numerical analysis shows ¢=0.2, quite close too, which suggests
x=1.

n _ESR ZS (A2)

aHkls o OHg "

where we have used the eigenfunction orthonormalization
condition ¥,5%5;,=6,,. Now using Hy,= EY \Hyy.57,, along
with constraint Hy.,=(—1)""'Hy., in Eq. (A2) leads to Eq.
(20).

Equation (21) can similarly be proved. Multiplying both
sides of Eq. (A1) by S®. (m#n) followed by a summation
over all i’s, we obtain

mi

> 5t P

Jj " ﬁHkl 38 )\n A

2 Sl‘)‘ll l] S

(A3)
m i,j &Hkl s

A multiplication of both sides by S,,, followed by a summa-
tion over all m’s then gives Eq. (21).

Equation (22) can be proved following similar steps, how-
ever, one should now begin with = SRH =\ SR
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APPENDIX B: DETAILED PROOFS OF EQS. (23)-(25)

Proof of Eq. (23). As \,=3;SKH;S;, and Hyp.,=a,Hy.
with a;=1,

a,=az=a,=-1, we obtain [with the help of Eq.
(20)]

2 E — " Hyo= 2, L[SZ

=1 k=l aHkls k=1 8k

+ SR amHy.) il

> ToH1:5)S 1

1
=32 (SucHuSin+ SiHuSi) =N
k.l

(B1)

Here the last step is obtained by using the relation

Si=ifa! 8= (1/2)Z if -
Proof of Eq. (24). We have

E gHE

k=l s=1 ‘“7Hkls 19H1<15

- 2 2 (SnkT Sln ka Slm +a SnIT Sanka Slm)
s=1 k1l

= 2 ka(z Tsslnsqurs‘)slm
k,l K
+ E 2 assflTx(z Sanf;;k) Tsslm’ (BZ)
s 1 k

where Eq. (B2) has been obtained by using af:l (for all s)
and Eq. (20). Now as

4 4

R R
2 TsSlnSkas == SkmSnlz as
s=1 s=1

and 3 S® S, = s To=a,, Sia,=—-2, and 3a’=4, Eq. (B2)
can be rewritten as

(B3)
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- E S;lfkskmszlflslm + 5nm2 2 asSSIT?Slm
kil s 1
= 8un(-2+ 2 a}) =28, (B4)
Proof of Eq. (25). We have
(9S s,
281«12 2 < TSln+Sn Ts
k=l s=1 é’sz s k=bs \OHp “oH
&SR Skn
+a, TS + a ST .

Hi.s ks

(BS)

Now using Egs. (21) and (22), we obtain

3

R R
N E E (asSn[TsSkmSkasSln
ms=1 k,l

E 8k12 2 2

k=l slaHklg m M=
+8y kTSlmS K TsSin)

PR [2 S 4SS SenStY)
l K k

m#n n )\m

X TsSln + E Sﬁk(z TsSlmSﬁka)Sln]
k,l s

= E E 6152 Sflsln
m#n )\n - )\m K 1
-3 SffkskmSﬁlsm)
k,l

-3 (B
-

m¥n

o (B6)

m
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